

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A level In Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WST02_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or aq- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2018 WST02 Mark Scheme

Question Number	Scheme	Marks
1(a)(i)	P(M=1) = 0.315124 awrt <u>0.315</u>	B1
(ii)	$P(M \ge 3) = 1 - P(M \le 2)$ = 1 - 0.9885 awrt <u>0.0115</u>	M1 A1
(b)	$n \times 0.05 = 3$ (o.e.) $n = 60$	(3) M1 A1 (2)
(c)	$\left[P(F \geqslant 1) > 0.99 \Rightarrow \right] 1 - P(F = 0) > 0.99$	M1
	$1 - 0.95^n > 0.99$ or $0.95^n < 0.01$ (o.e.)	M1
	$n \log 0.95 < \log 0.01 \text{ or } n > \frac{\log 0.01}{\log 0.95} [= 89.78]$	M1
	$\therefore n = 90$	A1cso
	Natas	(4)
(a)(ii)	NotesTotal 9M1 for $1 - P(M \le 2)$. Condone writing $1 - P(M \le 2)$ if the correct answer follows.	
	Just seeing $1 - P(X < 3)$ is not enough unless it leads to the correct answer. A1 for awrt 0.0115 (Correct answer only 2/2)	
(b)	M1 for writing or using $n \times 0.05$ Can ignore mention of Poisson if correct equation is seen. A1 for 60 only (Correct answer only 2/2)	
(c)	1st M1 for using or writing $1 - P(F = 0)$ in a <u>correct</u> inequality or equation with 0.99 2nd M1 for either of the correct inequalities, allow \geqslant or \leqslant or $=$ (oe) [May be implied by 3rd M] Use of "=" instead of inequality can score 1st two M marks only. 3rd M1 for solving $0.95^n < 0.01$ (o.e.) (must have an inequality) Must have a correct inequality here so $n \log 0.95 = \log 0.01$ is M0A0 even if it leads to 90 For trial and improvement approach must see both 89 & 90 used. Trial and improvement needs $P(0 n = 89) = 0.0104 > 0.01$ and $P(0 n = 90) = 0.00988 < 0.01$ and then 1st and 2nd M1 implied A1 cso − no sign errors or mistakes	
SC NB	Wrong inequality $1 - P(F = 0) < 0.99$ leading to $n < $ awrt 89.8 can score M0M0M1A0 Normal use of normal distribution will score $0/4$	

Question Number	Scheme	Marks
2(a)	$H_0: \lambda = 4$ $H_1: \lambda > 4$	B1
-()	$X \sim \text{Po}(8)$ and $P(X \geqslant 14) = 1 - P(X \leqslant 13)$	M1
	= 1 - 0.9658 = 0.0341807 awrt 0.0342	Al
	There is evidence to reject H_0	dM1
	There is evidence to support Emma's belief (o.e.)	A1
		(5)
(J-)		
(b)	[F = no. of faults in a piece of cloth of length l]	
	$e^{-\frac{4l}{50}} = 0.90$	M1A1
	$-\frac{4\times1.25}{}$ $-\frac{4\times1.35}{}$	
	$e^{-\frac{4\times1.25}{50}} = 0.9048, e^{-\frac{4\times1.35}{50}} = 0.8976$ $\underline{or} (\pm)\frac{4l}{50} = \ln 0.9$	M1
	These values are either side of 0.90 $\therefore l = 1.3$ to 2 sf or $l = 1.317$ $\therefore 1.3$	Alcso
	These values are either side of 0.50 v 1.5 to 2 st or v 1.51/ 1.5	(4)
(c)	Expected number with no faults $= 5000 \times 0.9 = 4500$	M1
	Expected number with some faults = $5000 \times 0.1 = 500$	
	So expected profit = $4500 \times 2.5 - 500 \times 0.5$ = £11000	M1 A1
	- £11000	$\begin{vmatrix} A_1 \\ (3) \end{vmatrix}$
	Notes	Total 12
(a)	B1 for both hypotheses – allow μ or λ and 4 or 8	1
,	1 st M1 for using or writing $1 - P(X \le 13)$ with $X \sim Po(8)$	
	1st A1 for awrt 0.0342 [Stating CR is $X \ge 14$ scores the M1A1]	
	2 nd dM1 dep on 1 st M1 for a correct conclusion for a 1-tail test with no incorrect co	onclusions
	2 nd A1 A correct contextual conclusion mentioning Emma's belief	
	or <u>faults</u> are distributed at a <u>rate</u> of <u>more than 4 per 50</u> metres	1 4 1 .
	Dep' on all previous marks but condone 0.34 for 0.342 on 1st A mark so B1M1A0M	1A1 is poss.
(b)	1st M1 for using $\frac{4l}{50}$ (o.e.) with Poisson. Can be scored anywhere in part (b). Use of	f Bin is 0/4
()	30	
	1st A1 for $e^{-\frac{4l}{50}} = 0.90$ or $(e^{-0.08})^l = 0.90$ or $(0.923)^l = 0.90$ or any other corresponds to $(0.923)^l = 0.90$ or $(0.923)^l = 0.90$	ect equ'n in l
	BUT $(0.92)^l = 0.90$ is M0A0 since can come from	om B $(l, 0.08)$
	2 nd M1 for subst in suitable values either side of 1.3 or using ln to solve	
NB	$\left[-\frac{50}{4}\ln(0.9) \text{ or } \frac{50}{4} \times 0.10536 \right]$ (allow awrt 0.105) or $l = \text{awrt } 1.32 \text{ scores } M$	[1A1M1]
	2 nd A1 for cso with conclusion and no incorrect working seen	
	If using "sandwich" approach we need ": $(l =)$ 1.3 to 2 sf"	
	If using "solve" approach we must see $l = \text{awrt } 1.32 \text{ and } " \therefore = 1.3$ "	
(c)	1 st M1 for using either 4500 or 500 or expected profit per sale $2.5 \times 0.9 - 0.5 \times 0$.	1 = 2.2
	2^{nd} M1 for $4500 \times 2.5 - 500 \times 0.5$ or 5000×2.2 or $5000 \times 2.5 - 500 \times 3$	
	A1 for 11000 (correct answer only 3/3)	
ALT	$Po(0.08 \times 1.3 = 0.104)$ They use 0.9012 for 0.9 and 0.09877 for 0.1	
	1st M1 as above but 4506 for 4500, 494 for 500 or 2.204for 2.2	-Α
	2 nd M1 as above using these values and final A1 for £ 11018 but accept £11000 (3s	S1 <i>)</i>

Question Number	Scheme	Marks	
3.(a)	$(102-100) p = \frac{1}{3} \underline{\text{or}} \frac{102-100}{k-100} = \frac{1}{3} \underline{\text{or}} \frac{k-102}{k-100} = \frac{2}{3} \underline{\text{or}} (k-100) p = 1 \text{ (o.e.)}$ $p = \frac{1}{6} \text{so} \qquad (k-100) \frac{1}{6} = 1$	M1	
	$p = \frac{1}{6}$ so $(k-100)\frac{1}{6} = 1$	dM1	
	k-100 = 6 therefore k = 106 *	A1cso (3)	
(b)(i)	$\frac{5}{6}$ (or exact equivalent)	B1	
(ii)	0	B1 (2)	
(c)	103	B1 (2)	
(d)	$\frac{r - 100}{6} = 0.15$	(1) M1	
	= 100.9	A1 (2)	
(e)	$3P(X \le x-1.5) = P(X \ge x+1.5)$ so $\frac{3}{6}(x-1.5-100) = \frac{1}{6}(106-x-1.5)$	M1	
	[3(x-1.5-100)=(106-x-1.5)] implies $4x-304.5=104.5$ (o.e.)	dM1	
	x = 102.25 (o.e.)	A1 (3)	
	Notes ()	Total 11	
(a)	1 st M1 for one of the 4 given equations (o.e.) 2 nd M1 for at least one intermediate step of working (condone 1 slip or sign error))	
ALT		These 2 M marks may be seen on a clearly labelled diagram.	
(c)	B1 for 103 (if working is seen it must not come from a discrete distribution or else	В0	
(d)	M1 for $\frac{r-100}{6} = 0.15$ oe (any correct equation or expression)		
(e)	1 st M1 for a correct equation for x e.g. $3p(x-1.5-100) = p(106-x-1.5)$ allow wire		
	2 nd dM1 for attempt to simplify, must have a linear equation with x appearing only once (condone 1 slip or sign error but no "lost" terms)		
ALT	1 st M1 for $P(X \le x - 1.5) = \frac{1}{8}$ or $P(X \ge x + 1.5) = \frac{3}{8}$		
	2^{nd} M1 for $1.5 + \frac{6}{8} = 2.25$ (o.e.)		
	A1 for $x = 102.25$ or any exact equivalent e.g. $\frac{409}{4}$ (Correct answer only 3/3)		

Question Number	Scheme	Marks
4. (a)	Every possible sample (of size 12 cartons) has an equal chance of being selected. Or sample selected without bias from the dairy/factory (o.e.) Or sample where all cartons have the same chance/prob of being chosen (o.e.)	B1
(b)	[The volumes of] <u>all</u> the <u>cartons</u> of milk Or <u>the cartons</u> of milk <u>from the dairy</u> /factory (o.e.)	(1) B1
(c)	N(0,1)	B1 (1)
(d)	The <u>probability distribution</u> of X or the distribution of all possible values of X Or <u>all</u> the <u>values</u> of the <u>statistic</u> and their <u>probabilities</u> (o.e.)	(1) B1
(e)	Only (II) is not a statistic as it contains (unknown) parameters μ and/or σ	B1 (1)
	Or it contains <u>unknown parameters</u> (o.e.)	B1d (2)
	Notes	Total 6
(e)	1 st B1 for choosing II only 2 nd dB1 dependent on choosing II only, for correct reason about parameters	

Question Number	Scheme	Marks	
5(a)	$[X \sim Po(6)]$		
(i)	$P(X=7) = P(X \le 7) - P(X \le 6)$	M1	
	=0.7440-0.6063		
	= 0.13767697 awrt <u>0.138</u>	A1	
(**)	$\mathbf{p}(\mathbf{v} \cdot 7) = 1 \cdot \mathbf{p}(\mathbf{v} < 7)$	N / 1	
(ii)	$P(X > 7) = 1 - P(X \le 7)$	M1	
	=1-0.744 = 0.2560202 awrt 0.256	A1	
		(4)	
(b)	[Let Y be the number of cars that pull into the service station]		
	$Y \sim N(\lambda, \lambda)$	M1	
	$\lambda = 0.6n$	B1	
	P(Y > 40) = 0.2266		
		M1M1 B1	
	$\frac{40.5 - \lambda}{\sqrt{\lambda}} = 0.75$	A1	
	· ·		
	$\lambda + 0.75\sqrt{\lambda} - 40.5 = 0$		
	$\sqrt{\lambda} = 6$ $n = 60$	M1A1	
	n = 60	A1 (9)	
	Notes	Total 13	
(a) (i)	M1 for writing or using $P(X \le 7) - P(X \le 6)$ or $\frac{e^{-\lambda} \lambda^7}{7!}$ (correct answer only 2/2)		
(ii)	M1 for writing or using $1 - P(X \le 7)$ (correct answer only 2/2)		
(b)	1^{st} M1 for stating Normal with mean = variance (can be any letter or number) 1^{st} B1 for using $\lambda = 0.6n$ somewhere (can be awarded at any stage) 2^{nd} M1 for use of a continuity correction on 40 i.e. 40 ± 0.5		
	3^{rd} M1 for standardising with 40, 39.5 or 40.5 and their μ and $\sqrt{\mu}$ and set equal	to a z value	
	where $0.74 < z < 0.76$ (μ can be any letter, including n , or $3n$ or $0.6n$ etc		
	where $0.74 < z < 0.76$ (μ can be any letter, including n , of $3n$ of $0.6n$ etc. 2^{nd} B1 for $z = \pm 0.75$ or better	·)	
	1^{st} A1 for a fully correct equation in any form (allow their letter for λ)		
	4 th M1 for attempt to solve their 3 term quadratic (must be seen or implied by $\sqrt{\lambda} = 6$ o.e.) e.g. correct substitution in the formula for their coefficients		
	2 nd A1 for $\sqrt{\lambda} = 6$ or $\lambda = 36$ (allow their letter including <i>n</i>) on e.g. $\sqrt{n} = 2\sqrt{15}$		
	$3^{\text{rd}} \text{ A1} \qquad \text{for } n = 60$		
NB	Using <i>n</i> (or any letter) instead of λ could score all marks except 1 st B1 and 3 rd A1		

Question Number	Scheme	Marks	
6(a)	$E(X) = \int_0^1 \frac{1}{4} x dx + \int_1^2 \frac{x^4}{5} dx$	M1	
	$= \left[\frac{x^2}{8}\right]_0^1 + \left[\frac{x^5}{25}\right]_1^2; \left[=\frac{1}{8} + \frac{32}{25} - \frac{1}{25}\right] = \frac{273}{200} \text{ or } \underline{1.365} \text{ (oe) or awrt } \underline{1.37}$	dM1; A1cso	
(b)	$E(X^{2}) = \int_{0}^{1} \left(\frac{1}{4}x^{2}\right) dx + \int_{1}^{2} \left(\frac{1}{5}x^{5}\right) dx$	M1	
	$\operatorname{Var}(X) = \left[\frac{x^3}{12}\right]_0^1 + \left[\frac{x^6}{30}\right]_1^2 - \left[1.365\right]^2; \left[=\frac{1}{12} + \frac{64}{30} - \frac{1}{30} - \left[1.365\right]^2\right] = 0.32010 \underline{0.320}$	dM1; A1cso	
	$\int \left(\frac{t^3}{5}\right) dt = \left[\frac{t^4}{20}\right] + D \text{and use of } F(2) = 1 \text{ or } F(1) = \frac{1}{4} \text{ or } \frac{1}{4} + \int_1^x \left(\frac{t^3}{5}\right) dt$ $\int \left(\frac{t^3}{5}\right) dt = \left[\frac{t^4}{20}\right] + D \text{and use of } F(2) = 1 \text{ or } F(1) = \frac{1}{4} \text{ or } \frac{1}{4} + \int_1^x \left(\frac{t^3}{5}\right) dt$	(3) M1	
	$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{4}x & 0 \le x < 1 \\ \frac{x^4}{20} + \frac{1}{5} & 1 \le x \le 2 \\ 1 & x > 2 \end{cases}$ Correct 2 nd row with range $Correct 3^{rd} \text{ row with range}$ $Correct 1st and 4th rows with ranges$	B1	
	$\begin{cases} \frac{x^4}{20} + \frac{1}{5} & 1 \leq x \leq 2 \end{cases}$ Correct 3 rd row with range	A1	
	Correct 1 st and 4 th rows with ranges	D1	
(d)	$\frac{x^4}{20} + \frac{1}{5} = 0.5$	(4) M1	
	$x = \left[\sqrt[4]{6} \right] = 1.565$ awrt <u>1.57</u>	A1 (2)	
(e)	Mean < median or mode = 2 and mean or median < mode [or sketch] negative skew	M1 A1ft (2)	
	Notes	Total 14	
(a)	1 st M1 for using $\int xf(x)dx$ and adding the 2 parts together, ignore limits 2 nd dM1 for all integration correct ignore limits The A1 cso in (a) and (b) require evidence of Ms		
(b)	1 st M1 for using $\int x^2 f(x) dx$ and adding the 2 parts together, ignore limits scored.		
	2^{nd} dM1 for using $E(X^2) - [E(X)]^2$ Some correct integration must be seen <u>and</u> $-[E(X)]^2$		
	A1 cso for awrt 0.320 but accept 0.32 following a correct numerical expression e.g. $\frac{131}{60} - (\frac{273}{200})^2$		
(c)	M1 for integrating and using + D and F(2) = 1 or F(1) = $\frac{1}{4}$ or adding $\frac{1}{4}$ or $\int_0^1 \frac{1}{4} dx$ to $\int_1^x \left(\frac{t^3}{5}\right) dt$		
	1 st B1 for correct equation with range for $0 \le x \le 1$ (allow \le or \le either end)		
(d)	M1 if "F(1)" < 0.5 then their 3^{rd} row F(x)=0.5 if "F(1)" > 0.5 then their 2^{nd} row F(x) = 0.5 A1 awrt 1.57		
(e)	For skew follow through their values for mean and median only. M1 for correct comparison of mean/median (for their values in [0, 2]) /mode = 2 A1ft for consistent conclusion about skewness [Allow accurate sketch, but must have –ve skew]		

Question Number	Scheme	Marks	
7(a)	$X \sim B(25, 0.40)$	M1	
	$P(X \le 3) = 0.0024$ (calc: 0.002366768) accept $P(X \le 4)$	A1	
	$P(X \ge 17) = 0.0043$ (calc: 0.004326388) accept $P(X > 16)$	A1	
	CR: $X \le 3$, $X \ge 17$ (o.e.)	A1, A1	
		(5)	
(b)	0.0067	B1ft	
		(1)	
(c)	$H_0: p = 0.4$ $H_1: p < 0.4$	B1	
	$[R \sim B(50, 0.4)]$		
	$P(R \le 8) = 0.0002305$ awrt 0.0002	M1	
	Reject H ₀ Evidence that: the changes have been successful or there are fewer red sweets (oe)	A1 A1cso	
	Evidence that: the changes have been successful of there are lewer red sweets (60)	$\begin{array}{ c c c } A & C & C & C & C & C & C & C & C & C &$	
	Notes	Total 10	
(a)	M1 for writing or using B(25, 0.4) [Can be implied by any of the correct answers]		
	1st A1 for $P(X \le 3) = 0.0024$ (Just giving 0.0024 only scores if $CR X \le 3$ is g	*	
	2^{nd} A1 for $P(X \ge 17) = 0.0043$ (Just giving 0.0043 only scores if $CR X \ge 17$ is given) 3^{rd} A1 for $CR : X \le 3$ or $X \le 4$		
	4 th A1 for CR: $X \le 3$ or $X < 4$ Apply ISW for e.g. $3 \ge X \ge 17$ or $X \le 3$ and	$X \geqslant 17$ etc	
	If the <u>only</u> answer is $3 \ge X \ge 17$ award 3^{rd} A1 4^{th} A0		
3rd ,4th As	We mark the region(s) labelled CR. If no CR labels accept $X \le 3$, $X \ge 17$		
	(condone $X \le 3 \cap X \ge 17$ or $X \le 3$ and $X \ge 17$ etc)		
	Do not accept probability statements as critical regions.		
(b)	B1ft for 0.0067 or ft sum of their 2 probabilities (1 st A and 2 nd A in (a))		
(c)	B1 for both hypotheses in terms of p or π		
(-)	M1 for $P(R \le 8) = \text{awrt } 0.0002 \text{ or stating CR: } R \le 11$		
	Condone writing $P(X = 8) = \text{awrt } 0.0002 \text{ but award } 2^{\text{nd}} \text{ A0 cso}$		
	1 st A1 for a correct non-contextual conclusion 2 nd A1cso for a correct contextual conclusion dependent on all other marks		
SC	Use B(25, 0.4) Can score 1 st B1 Also if they get $P(R \le 8) = 0.27353 = \text{awrt } 0.274$	award B1	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom